رمز المتوسط المتحرك للانحدار الذاتي


عمليات الانحدار الذاتي المتوسط ​​المتحرك لعمليات الخطأ يمكن تقدير عمليات الانتحار الذاتي للتحرك المتوسط ​​(أخطاء أرما) والنماذج الأخرى التي تنطوي على تأخر في عبارات الخطأ باستخدام عبارات فيت والمحاكاة أو التنبؤ باستخدام عبارات سولف. وغالبا ما تستخدم نماذج أرما لعملية الخطأ للنماذج ذات المخلفات ذات الصلة. يمكن استخدام الماكرو أر لتحديد نماذج مع عمليات خطأ الانحدار الذاتي. يمكن استخدام ماكرو ما لتحديد النماذج مع عمليات الخطأ المتوسط ​​المتوسط. أخطاء الانحدار الذاتي نموذج يحتوي على أخطاء الانحدار الذاتي من الدرجة الأولى، أر (1)، لديه النموذج أثناء عملية خطأ أر (2) يحتوي على النموذج وهكذا دواليك لعمليات أعلى ترتيب. لاحظ أن s مستقلة وموزعة بشكل متطابق ولها قيمة متوقعة من 0. مثال على نموذج مع عنصر أر (2) هو وهكذا دواليك لعمليات أعلى ترتيب. على سبيل المثال، يمكنك كتابة نموذج الانحدار الخطي بسيط مع ما (2) المتوسط ​​المتحرك الأخطاء حيث حيث MA1 و MA2 هي المعلمات المتوسط ​​المتحرك. لاحظ أن RESID. Y يتم تعريفها تلقائيا بواسطة بروك موديل كما يجب استخدام الدالة زلاغ لمناذج ما لاقتطاع عودة العطل. ويضمن ذلك أن تبدأ الأخطاء المتأخرة عند الصفر في طور التأخر ولا تنشر القيم الناقصة عندما تكون متغيرات فترة التأخر مفقودة، وتضمن أن تكون الأخطاء المستقبلية صفرا وليس مفقودة أثناء المحاكاة أو التنبؤ. للحصول على تفاصيل حول وظائف التأخر، راجع القسم لاغ لوجيك. هذا النموذج المكتوب باستخدام ماكرو ما هو كما يلي: النموذج العام لنماذج أرما العملية أرما (p، q) العامة لها النموذج التالي يمكن تحديد نموذج أرما (p، q) كما يلي: حيث أر i و ما j تمثل ومعدلات الانحدار الذاتي والمتوسط ​​المتحرك لمختلف الفواصل الزمنية. يمكنك استخدام أي أسماء تريدها لهذه المتغيرات، وهناك العديد من الطرق المكافئة التي يمكن أن تكون مكتوبة المواصفات. ويمكن أيضا أن يتم تقدير العمليات أرما ناقلات مع بروك نموذج. على سبيل المثال، يمكن تحديد عملية أر (1) ثنائية المتغير لأخطاء المتغيرين الداخليين Y1 و Y2 على النحو التالي: مشكلات التقارب مع نماذج أرما يمكن أن يكون من الصعب تقدير نماذج أرما. إذا لم تكن تقديرات المعلمة ضمن النطاق المناسب، تنمو النماذج المتبقية للمتوسط ​​المتحرك بشكل مطرد. ويمكن أن تكون المخلفات المحسوبة للملاحظات اللاحقة كبيرة جدا أو يمكن تجاوزها. ويمكن أن يحدث ذلك إما بسبب استخدام قيم بدء غير ملائمة أو بسبب تكرارات التكرارات بعيدا عن القيم المعقولة. يجب استخدام العناية في اختيار قيم البدء لمعلمات أرما. وتبدأ قيم البداية التي تبلغ 0.001 بالنسبة إلى معلمات أرما إذا كان النموذج يلائم البيانات جيدا والمشكلة مكيفة جيدا. لاحظ أن نموذج ما يمكن في كثير من الأحيان تقريب من قبل نموذج أر عالية الترتيب، والعكس بالعكس. وهذا يمكن أن يؤدي إلى علاقة خطية متداخلة عالية في نماذج أرما مختلطة، والتي بدورها يمكن أن يسبب سوء تكييف خطيرة في الحسابات وعدم استقرار تقديرات المعلمة. إذا كان لديك مشاكل التقارب أثناء تقدير نموذج مع عمليات خطأ أرما، في محاولة لتقدير في الخطوات. أولا، استخدم بيان فيت لتقدير فقط المعلمات الهيكلية مع المعلمات أرما التي عقدت إلى الصفر (أو إلى تقديرات معقولة معقولة إن وجدت). بعد ذلك، استخدم عبارة فيت أخرى لتقدير معلمات أرما فقط، باستخدام قيم المعلمات الهيكلية من التشغيل الأول. وبما أن قيم المعلمات الهيكلية من المرجح أن تكون قريبة من تقديراتها النهائية، فإن تقديرات المعلمة أرما قد تتلاقى الآن. وأخيرا، استخدم بيان فيت آخر لإنتاج تقديرات متزامنة لجميع المعلمات. وبما أن القيم الأولية للمعلمات من المرجح أن تكون قريبة جدا من تقديراتها النهائية المشتركة، ينبغي أن تتلاقى التقديرات بسرعة إذا كان النموذج مناسبا للبيانات. الشروط المبدئية أر يمكن وضع الفواصل الأولية لشروط الخطأ في نماذج أر (p) بطرق مختلفة. طرق بدء تشغيل خطأ الانحدار الذاتي التي تدعمها إجراءات ساسيتس هي التالية: المربعات الصغرى المشروطة (إجراءات أريما و موديل) المربعات الصغرى غير المشروطة (أوتوريغ، أريما، وإجراءات موديل) أقصى احتمالات (أوتوريغ، أريما، وإجراءات موديل) يول ووكر (أوتوريغ الإجراء الوحيد) هيلدريث-لو، الذي يحذف أول ملاحظات p (إجراء نموذج فقط) انظر الفصل 8، الإجراء أوتوريغ، للحصول على شرح ومناقشة مزايا مختلف أساليب بدء التشغيل أر (p). يمكن إجراء كلس، أولس، مل، و أوليتيزاتيونس من قبل بروك نموذج. بالنسبة إلى أخطاء أر (1)، يمكن إنتاج هذه التهيئة كما هو مبين في الجدول 19.2. هذه الطرق تعادل في عينات كبيرة. الجدول 19.2 التهيئة التي يتم إجراؤها بواسطة بروك نموذج: أر (1) الأخطاء يمكن أيضا أن تكون الفواصل الأولية لشروط خطأ نماذج ما (q) نموذجا بطرق مختلفة. يتم دعم نماذج بدء خطأ المتوسط ​​المتوسط ​​التالية من خلال إجراءات أريما و موديل: مربعات أقل مشروطة المربعات الصغرى الشرطية طريقة المربعات الصغرى الشرطية لتقدير عبارات الخطأ المتوسط ​​المتوسط ​​ليست الأمثل لأنه يتجاهل مشكلة بدء التشغيل. وهذا يقلل من كفاءة التقديرات، على الرغم من أنها تظل غير متحيزة. ويفترض أن المخلفات الأولية المتأخرة، التي تمتد قبل بدء البيانات، هي صفر، قيمتها المتوقعة غير المشروطة. ويحدث هذا فرقا بين هذه المخلفات ومتبقي المربعات الصغرى المعمم في التباين المتوسط ​​المتحرك، الذي يستمر، خلافا لنموذج الانحدار الذاتي، من خلال مجموعة البيانات. وعادة ما يتقارب هذا الاختلاف بسرعة إلى 0، ولكن بالنسبة لعمليات المتوسط ​​المتحرك غير القابلة للتحويل تقريبا فإن التقارب بطيء جدا. لتقليل هذه المشكلة، يجب أن يكون لديك الكثير من البيانات، ويجب أن تكون تقديرات معامل المتوسط ​​المتحرك ضمن النطاق القابل للانعكاس. ويمكن تصحيح هذه المشكلة على حساب كتابة برنامج أكثر تعقيدا. ويمكن إنتاج تقديرات المربعات الصغرى غير المشروطة لعملية ما (1) من خلال تحديد النموذج على النحو التالي: يمكن أن يكون من الصعب تقدير المتوسط ​​المتحرك للأخطاء. يجب أن تفكر في استخدام تقريب أر (p) لعملية المتوسط ​​المتحرك. ويمكن عادة أن تكون عملية المتوسط ​​المتحرك مقاربة بشكل جيد من خلال عملية الانحدار الذاتي إذا لم يتم تمهيد أو اختلاف البيانات. أر ماكرو يولد أر ماك ساس بيانات البرمجة ل بروك موديل لنماذج الانحدار الذاتي. الماكرو أر هو جزء من برنامج ساسيتس، ولا حاجة إلى تعيين خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الانحدار الذاتي على أخطاء المعادلة الهيكلية أو إلى سلسلة الذاتية نفسها. يمكن استخدام الماكرو أر للأنواع التالية من الانحدار الذاتي: الانحدار الذاتي غير المقيد الانحدار الذاتي المتجه المقيد الانحدار الذاتي المتغير ونيفاريت لرسم نموذج الخطأ في المعادلة كعملية الانحدار الذاتي، استخدم العبارة التالية بعد المعادلة: على سبيل المثال، لنفترض أن Y هو الدالة الخطية ل X1 و X2 و أر (2). يمكنك كتابة هذا النموذج على النحو التالي: يجب أن تأتي المكالمات إلى أر بعد كل المعادلات التي تنطبق عليها العملية. ويؤدي الاستدعاء الكلي السابق، أر (y، 2)، إلى عرض البيانات المبينة في خرج ليست في الشكل 19.58. الشكل 19.58 ليست مخرجات الخيار لنموذج أر (2) الإجراء النموذجي المتغيرات المسبقة المسبقة بيد هي متغيرات البرنامج المؤقتة المستخدمة بحيث تكون التخلف عن البقايا هي البقايا الصحيحة وليس تلك المعاد تعريفها بواسطة هذه المعادلة. لاحظ أن هذا يعادل البيانات المكتوبة بشكل صريح في المقطع نموذج عام لنماذج أرما. يمكنك أيضا تقييد المعلمات الانحدار الذاتي إلى صفر عند التأخر المحدد. على سبيل المثال، إذا كنت تريد معلمات الانحدار الذاتي في الفترات 1 و 12 و 13، يمكنك استخدام العبارات التالية: هذه العبارات تولد الإخراج الموضح في الشكل 19.59. الشكل 19.59 ليست مخرجات الخيار لنموذج أر مع تأخيرات عند 1 و 12 و 13 هناك اختلافات في طريقة المربعات الصغرى المشروطة، اعتمادا على ما إذا كانت الملاحظات في بداية السلسلة تستعمل لتدفئة عملية أر. وبشكل افتراضي، تستخدم طريقة المربعات الصغرى المشروطة أر جميع الملاحظات وتفترض الأصفار للتخلف الأولي لشروط الانحدار الذاتي. باستخدام الخيار M، يمكنك طلب أن أر استخدام المربعات الصغرى غير المشروطة (أولس) أو أقصى احتمال (مل) طريقة بدلا من ذلك. على سبيل المثال، يتم عرض مناقشات هذه الطرق في القسم أر الشروط الأولية. وباستخدام الخيار مكلس n، يمكنك طلب استخدام أول ملاحظات n لحساب تقديرات الفترات الزمنية الأولية للانحراف الذاتي. في هذه الحالة، يبدأ التحليل بالملاحظة n 1. على سبيل المثال: يمكنك استخدام الماكرو أر لتطبيق نموذج الانحدار الذاتي على المتغير الداخلي، بدلا من مصطلح الخطأ، وذلك باستخدام الخيار تيبيف. على سبيل المثال، إذا كنت ترغب في إضافة الفواصل السابقة الخمس من Y إلى المعادلة في المثال السابق، يمكنك استخدام أر لإنشاء المعلمات والتخلف باستخدام العبارات التالية: البيانات السابقة توليد الإخراج هو مبين في الشكل 19.60. الشكل 19،60 ليست مخرجات الخيار لنموذج أر من Y يتنبأ هذا النموذج Y بمزيج خطي من X1 و X2 و اعتراض وقيم Y في أحدث خمس فترات. استخلاص الانحدار غير المقيد للناقلات لنموذج مصطلحات الخطأ لمجموعة من المعادلات كعملية متجه الانحدار الذاتي، استخدم النموذج التالي من ماكرو أر بعد المعادلات: قيمة اسم العملية هي أي اسم تقدمه أر لاستخدامه في صنع أسماء الانحدار الذاتي المعلمات. يمكنك استخدام ماكرو أر لنموذج عدة عمليات أر مختلفة لمجموعات مختلفة من المعادلات باستخدام أسماء عملية مختلفة لكل مجموعة. يضمن اسم العملية أن أسماء المتغيرات المستخدمة فريدة. استخدم قيمة اسم عملية قصيرة للعملية إذا كانت تقديرات المعامل ستكتب إلى مجموعة بيانات الإخراج. يحاول الماكرو أر إنشاء أسماء معلمات أقل من أو يساوي ثمانية أحرف، ولكن هذا يقتصر طول العملية. والذي يستخدم كبادئة لأسماء معلمات أر. القيمة فاريابلليست هي قائمة المتغيرات الذاتية للمعادلات. على سبيل المثال، لنفترض أن أخطاء المعادلات Y1 و Y2 و Y3 يتم إنشاؤها بواسطة عملية الانحدار الذاتي للناقلات من الدرجة الثانية. يمكنك استخدام العبارات التالية: التي تولد التالية ل Y1 و التعليمات البرمجية مشابهة ل Y2 و Y3: يمكن استخدام الأسلوب المربعات الصغرى الشرطية (مكلس أو مكلس n) لعمليات المتجه. يمكنك أيضا استخدام نفس النموذج مع القيود التي مصفوفة معامل تكون 0 في التأخر المحدد. على سبيل المثال، تنطبق العبارات التالية عملية متجه من الدرجة الثالثة على أخطاء المعادلة مع كل المعاملات عند التأخر 2 المقيدة إلى 0 ومع المعاملات عند الفواصل الزمنية 1 و 3 غير المقيدة: يمكنك نموذج السلسلة الثلاثية Y1Y3 باعتبارها عملية الانحدار الذاتي المتجه في المتغيرات بدلا من الأخطاء باستخدام الخيار تيبيف. إذا كنت ترغب في نموذج Y1Y3 كدالة للقيم الماضية من Y1Y3 وبعض المتغيرات الخارجية أو الثوابت، يمكنك استخدام أر لتوليد البيانات لفترات التأخر. اكتب معادلة لكل متغير للجزء نونوتريغريسيف من النموذج ثم قم باستدعاء أر مع الخيار تيبيف. على سبيل المثال، يمكن أن يكون الجزء غير التخريطي للنموذج دالة للمتغيرات الخارجية، أو يمكن أن يكون معلمات اعتراض. إذا لم تكن هناك مكونات خارجية لنموذج الانحدار الذاتي للناقل، بما في ذلك عدم وجود اعتراضات، ثم قم بتعيين صفر لكل من المتغيرات. يجب أن يكون هناك تخصيص لكل من المتغيرات قبل أن يسمى أر. ويوضح هذا المثال المتجه Y (Y1 Y2 Y3) كدالة خطية فقط لقيمته في الفترتين السابقتين ومجهز خطأ ضوضاء أبيض. يحتوي النموذج على 18 (3 3 3 3) معلمات. بناء الجملة من ماكرو أر هناك حالتان من بناء الجملة لل ماكرو أر. عندما لا تكون هناك حاجة إلى قيود على عملية أر ناقلات، وبناء الجملة ماكرو أر الشكل العام يحدد بادئة أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتحديد عملية أر. إذا لم يتم تحديد إندوليست، فإن القائمة الذاتية افتراضيا للاسم. التي يجب أن تكون اسم المعادلة التي سيتم تطبيق عملية خطأ أر. لا يمكن أن تتجاوز قيمة الاسم 32 حرفا. هو ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. إذا تم إعطاء أكثر من اسم واحد، يتم إنشاء عملية ناقلات غير مقيدة مع المخلفات الهيكلية من جميع المعادلات المدرجة على النحو المتراجعون في كل من المعادلات. إذا لم يتم تحديدها، افتراضيات إندوليست الاسم. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات في فترات التأخر غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة. ولا تدعم طرائق أر و نواقل أر من قبل أر. يحدد أن عملية أر يتم تطبيقها على المتغيرات الذاتية نفسها بدلا من المخلفات الهيكلية للمعادلات. تقييد الانتكاس التلقائي المقيد يمكنك التحكم في المعاملات التي يتم تضمينها في العملية، مع تقييد 0 تلك المعلمات التي لا تتضمنها. أولا، استخدم أر مع الخيار ديفر لإعلان قائمة المتغيرات وتحديد بعد العملية. ثم، استخدام المكالمات أر إضافية لتوليد مصطلحات للمعادلات المحددة مع المتغيرات المحددة في التأخر المحدد. وعلى سبيل المثال، فإن معادلات الخطأ المنتجة هي كما يلي: يشير هذا النموذج إلى أن أخطاء Y1 تعتمد على أخطاء كل من Y1 و Y2 (ولكن ليس Y3) عند كل من الفارقين 1 و 2، وأن الأخطاء في Y2 و Y3 تعتمد على الأخطاء السابقة لجميع المتغيرات الثلاثة، ولكن فقط في تأخر 1. أر بناء الجملة ماكرو للمتجهات المقيدة أر يسمح استخدام بديل من أر لفرض قيود على عملية أر المتجه عن طريق استدعاء أر عدة مرات لتحديد مصطلحات أر مختلفة والتخلف لمختلف المعادلات. المكالمة الأولى لها النموذج العام يحدد البادئة ل أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية أر المتجهات. يحدد ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. يحدد أن أر ليس لتوليد عملية أر ولكن الانتظار إلى مزيد من المعلومات المحددة في وقت لاحق أر يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. يحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في نداء أر هذا. يمكن فقط أن تظهر الأسماء المحددة في قيمة إندوليست للمكالمة الأولى لقيمة الاسم في قائمة المعادلات في إكليست. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. يمكن فقط أن تظهر الأسماء في إندوليست المكالمة الأولى لقيمة الاسم في فارليست. إذا لم يحدد، افتراضات فارليست إلى إندوليست. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات عند التأخيرات غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي قيمة نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، لاغليست الافتراضية لجميع يتخلف 1 خلال نلاغ. ما ماكرو ساس ماكرو ماك يولد بيانات البرمجة ل بروك نموذج لنماذج المتوسط ​​المتحرك. ماكرو ما هو جزء من برنامج ساسيتس، ولا حاجة إلى خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الخطأ المتوسط ​​المتوسط ​​على أخطاء المعادلة الهيكلية. بناء جملة ماكرو ما هو نفس الماكرو أر باستثناء عدم وجود وسيطة تايب. عندما كنت تستخدم ماك و أر وحدات الماكرو مجتمعة، ماكرو ما يجب اتباع ماكرو أر. تنتج عبارات ساسمل التالية عملية خطأ أرما (1، (1 3)) وحفظها في مجموعة البيانات مادات 2. وتستخدم عبارات بروك موديل التالية لتقدير معلمات هذا النموذج باستعمال أقصى بنية للخطأ المحتمل: وترد في الشكل 19.61 تقديرات المعلمات التي ينتجها هذا المدى. الشكل 19.61 تقديرات من أرما (1، (1 3)) العملية هناك حالتان من بناء الجملة ل ماكرو ما. عندما لا تكون هناك حاجة إلى قيود على عملية ما متجه، بناء جملة ماكرو ما النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما وهو إندوليست الافتراضي. هو ترتيب عملية ما. يحدد المعادلات التي سيتم تطبيق عملية ما. إذا تم إعطاء أكثر من اسم واحد، يتم استخدام تقدير كلس لعملية المتجه. يحدد الفترات الزمنية التي ستضاف فيها مصطلحات ما. يجب أن تكون جميع الفترات المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة في إندوليست. ما ماكرو سينتاكس فور كونستروكتد فيكتور موفينغ-أفيراج يسمح باستخدام بديل ل ما فرض قيود على عملية ما المتجه عن طريق استدعاء ما عدة مرات لتحديد شروط ما المختلفة والتخلف عن المعادلات المختلفة. المكالمة الأولى لديها النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما المتجه. يحدد ترتيب عملية ما. يحدد قائمة المعادلات التي سيتم تطبيق عملية ما. يحدد أن ما ليس لتوليد عملية ما ولكن هو الانتظار للحصول على مزيد من المعلومات المحددة في ما لاحق يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. تحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في هذه الدعوة. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. تحدد قائمة التأخيرات التي ستضاف إليها شروط ما. ويمكن تقدير عمليات الخطأ المتوسط ​​المتحرك (أخطاء أرما) والنماذج الأخرى التي تنطوي على تباطؤ في عبارات الخطأ باستخدام عبارات فيت والمحاكاة أو التنبؤ باستخدام عبارات سولف. وغالبا ما تستخدم نماذج أرما لعملية الخطأ للنماذج ذات المخلفات ذات الصلة. يمكن استخدام الماكرو أر لتحديد نماذج مع عمليات خطأ الانحدار الذاتي. يمكن استخدام ماكرو ما لتحديد النماذج مع عمليات الخطأ المتوسط ​​المتوسط. أخطاء الانحدار الذاتي نموذج يحتوي على أخطاء الانحدار الذاتي من الدرجة الأولى، أر (1)، لديه النموذج أثناء عملية خطأ أر (2) يحتوي على النموذج وهكذا دواليك لعمليات أعلى ترتيب. لاحظ أن s مستقلة وموزعة بشكل متطابق ولها قيمة متوقعة من 0. مثال على نموذج مع عنصر أر (2) هو وهكذا دواليك لعمليات أعلى ترتيب. على سبيل المثال، يمكنك كتابة نموذج الانحدار الخطي بسيط مع ما (2) المتوسط ​​المتحرك الأخطاء حيث حيث MA1 و MA2 هي المعلمات المتوسط ​​المتحرك. لاحظ أن RESID. Y يتم تعريفها تلقائيا بواسطة بروك موديل كما يجب استخدام الدالة زلاغ لمناذج ما لاقتطاع عودة العطل. ويضمن ذلك أن تبدأ الأخطاء المتأخرة عند الصفر في طور التأخر ولا تنشر القيم الناقصة عندما تكون متغيرات فترة التأخر مفقودة، وتضمن أن تكون الأخطاء المستقبلية صفرا وليس مفقودة أثناء المحاكاة أو التنبؤ. للحصول على تفاصيل حول وظائف التأخر، راجع القسم لاغ لوجيك. هذا النموذج المكتوب باستخدام ماكرو ما هو كما يلي: النموذج العام لنماذج أرما العملية أرما (p، q) العامة لها النموذج التالي يمكن تحديد نموذج أرما (p، q) كما يلي: حيث أر i و ما j تمثل ومعدلات الانحدار الذاتي والمتوسط ​​المتحرك لمختلف الفواصل الزمنية. يمكنك استخدام أي أسماء تريدها لهذه المتغيرات، وهناك العديد من الطرق المكافئة التي يمكن أن تكون مكتوبة المواصفات. ويمكن أيضا أن يتم تقدير العمليات أرما ناقلات مع بروك نموذج. على سبيل المثال، يمكن تحديد عملية أر (1) ثنائية المتغير لأخطاء المتغيرين الداخليين Y1 و Y2 على النحو التالي: مشكلات التقارب مع نماذج أرما يمكن أن يكون من الصعب تقدير نماذج أرما. إذا لم تكن تقديرات المعلمة ضمن النطاق المناسب، تنمو النماذج المتبقية للمتوسط ​​المتحرك بشكل مطرد. ويمكن أن تكون المخلفات المحسوبة للملاحظات اللاحقة كبيرة جدا أو يمكن تجاوزها. ويمكن أن يحدث ذلك إما بسبب استخدام قيم بدء غير ملائمة أو بسبب تكرارات التكرارات بعيدا عن القيم المعقولة. يجب استخدام العناية في اختيار قيم البدء لمعلمات أرما. وتبدأ قيم البداية التي تبلغ 0.001 بالنسبة إلى معلمات أرما إذا كان النموذج يلائم البيانات جيدا والمشكلة مكيفة جيدا. لاحظ أن نموذج ما يمكن في كثير من الأحيان تقريب من قبل نموذج أر عالية الترتيب، والعكس بالعكس. وهذا يمكن أن يؤدي إلى علاقة خطية متداخلة عالية في نماذج أرما مختلطة، والتي بدورها يمكن أن يسبب سوء تكييف خطيرة في الحسابات وعدم استقرار تقديرات المعلمة. إذا كان لديك مشاكل التقارب أثناء تقدير نموذج مع عمليات خطأ أرما، في محاولة لتقدير في الخطوات. أولا، استخدم بيان فيت لتقدير فقط المعلمات الهيكلية مع المعلمات أرما التي عقدت إلى الصفر (أو إلى تقديرات معقولة معقولة إن وجدت). بعد ذلك، استخدم عبارة فيت أخرى لتقدير معلمات أرما فقط، باستخدام قيم المعلمات الهيكلية من التشغيل الأول. وبما أن قيم المعلمات الهيكلية من المرجح أن تكون قريبة من تقديراتها النهائية، فإن تقديرات المعلمة أرما قد تتلاقى الآن. وأخيرا، استخدم بيان فيت آخر لإنتاج تقديرات متزامنة لجميع المعلمات. وبما أن القيم الأولية للمعلمات من المرجح أن تكون قريبة جدا من تقديراتها النهائية المشتركة، ينبغي أن تتلاقى التقديرات بسرعة إذا كان النموذج مناسبا للبيانات. الشروط المبدئية أر يمكن وضع الفواصل الأولية لشروط الخطأ في نماذج أر (p) بطرق مختلفة. طرق بدء تشغيل خطأ الانحدار الذاتي التي تدعمها إجراءات ساسيتس هي التالية: المربعات الصغرى المشروطة (إجراءات أريما و موديل) المربعات الصغرى غير المشروطة (أوتوريغ، أريما، وإجراءات موديل) أقصى احتمالات (أوتوريغ، أريما، وإجراءات موديل) يول ووكر (أوتوريغ الإجراء الوحيد) هيلدريث-لو، الذي يحذف أول ملاحظات p (إجراء نموذج فقط) انظر الفصل 8، الإجراء أوتوريغ، للحصول على شرح ومناقشة مزايا مختلف أساليب بدء التشغيل أر (p). يمكن إجراء كلس، أولس، مل، و أوليتيزاتيونس من قبل بروك نموذج. بالنسبة إلى أخطاء أر (1)، يمكن إنتاج هذه التهيئة كما هو مبين في الجدول 18.2. هذه الطرق تعادل في عينات كبيرة. الجدول 18.2 التهيئة التي يتم إجراؤها بواسطة بروك النموذجي: أر (1) الأخطاء يمكن أيضا أن تكون الفواصل الأولية لشروط الخطأ في نماذج ما (q) نموذجا بطرق مختلفة. يتم دعم نماذج بدء خطأ المتوسط ​​المتوسط ​​التالية من خلال إجراءات أريما و موديل: مربعات أقل مشروطة المربعات الصغرى الشرطية طريقة المربعات الصغرى الشرطية لتقدير عبارات الخطأ المتوسط ​​المتوسط ​​ليست الأمثل لأنه يتجاهل مشكلة بدء التشغيل. وهذا يقلل من كفاءة التقديرات، على الرغم من أنها تظل غير متحيزة. ويفترض أن المخلفات الأولية المتأخرة، التي تمتد قبل بدء البيانات، هي صفر، قيمتها المتوقعة غير المشروطة. ويحدث هذا فرقا بين هذه البقايا ومتبقي المربعات الصغرى المعمم في التباين المتوسط ​​المتحرك، الذي يستمر، خلافا لنموذج الانحدار الذاتي، من خلال مجموعة البيانات. وعادة ما يتقارب هذا الاختلاف بسرعة إلى 0، ولكن بالنسبة لعمليات المتوسط ​​المتحرك غير القابلة للتحويل تقريبا فإن التقارب بطيء جدا. لتقليل هذه المشكلة، يجب أن يكون لديك الكثير من البيانات، ويجب أن تكون تقديرات معامل المتوسط ​​المتحرك ضمن النطاق القابل للانعكاس. ويمكن تصحيح هذه المشكلة على حساب كتابة برنامج أكثر تعقيدا. ويمكن إنتاج تقديرات المربعات الصغرى غير المشروطة لعملية ما (1) من خلال تحديد النموذج على النحو التالي: يمكن أن يكون من الصعب تقدير المتوسط ​​المتحرك للأخطاء. يجب أن تفكر في استخدام تقريب أر (p) لعملية المتوسط ​​المتحرك. ويمكن عادة أن تكون عملية المتوسط ​​المتحرك مقاربة بشكل جيد من خلال عملية الانحدار الذاتي إذا لم يتم تمهيد أو اختلاف البيانات. أر ماكرو يولد أر ماك ساس بيانات البرمجة ل بروك موديل لنماذج الانحدار الذاتي. الماكرو أر هو جزء من برنامج ساسيتس، ولا حاجة إلى تعيين خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الانحدار الذاتي على أخطاء المعادلة الهيكلية أو إلى سلسلة الذاتية نفسها. يمكن استخدام الماكرو أر للأنواع التالية من الانحدار الذاتي: الانحدار الذاتي غير المقيد الانحدار الذاتي المتجه المقيد الانحدار الذاتي المتغير ونيفاريت لرسم نموذج الخطأ في المعادلة كعملية الانحدار الذاتي، استخدم العبارة التالية بعد المعادلة: على سبيل المثال، لنفترض أن Y هو الدالة الخطية ل X1 و X2 و أر (2). يمكنك كتابة هذا النموذج على النحو التالي: يجب أن تأتي المكالمات إلى أر بعد كل المعادلات التي تنطبق عليها العملية. ويؤدي الاستدعاء الكلي السابق، أر (y، 2)، إلى عرض البيانات المبينة في خرج ليست في الشكل 18.58. الشكل 18.58 ليست خیار الخیار لنموذج أر (2) متغیرات أر مسبقة الصیانة ھي متغیرات برنامجیة مؤقتة مستخدمة بحیث تکون تأخیرات البقایا ھي البقایا الصحیحة ولیس تلك التي تم إعادة تعریفھا بواسطة ھذه المعادلة. لاحظ أن هذا يعادل البيانات المكتوبة بشكل صريح في المقطع نموذج عام لنماذج أرما. يمكنك أيضا تقييد المعلمات الانحدار الذاتي إلى صفر عند التأخر المحدد. على سبيل المثال، إذا أردت معلمات الانحدار الذاتي عند الفترات الزمنية 1 و 12 و 13، يمكنك استخدام العبارات التالية: تولد هذه العبارات الإخراج الموضح في الشكل 18.59. الشكل 18.59 ليست مخرجات الخيار لنموذج أر مع تأخيرات في 1 و 12 و 13 قائمة الإجراءات النموذجية قائمة برمجية البرمجة البرمجية المجمعة كما تم تحليلها PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y بريد. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - بيردي) yl12 ZLAG12 (y - بيردي) yl13 ZLAG13 (y - بيردي) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y هناك الاختلافات على طريقة المربعات الصغرى المشروطة، اعتمادا على ما إذا كانت الملاحظات في بداية السلسلة تستخدم لتسخين عملية أر. وبشكل افتراضي، تستخدم طريقة المربعات الصغرى المشروطة أر جميع الملاحظات وتفترض الأصفار للتخلف الأولي لشروط الانحدار الذاتي. باستخدام الخيار M، يمكنك طلب أن أر استخدام المربعات الصغرى غير المشروطة (أولس) أو أقصى احتمال (مل) طريقة بدلا من ذلك. على سبيل المثال، يتم عرض مناقشات هذه الطرق في القسم أر الشروط الأولية. وباستخدام الخيار مكلس n، يمكنك طلب استخدام أول ملاحظات n لحساب تقديرات الفترات الزمنية الأولية للانحراف الذاتي. في هذه الحالة، يبدأ التحليل بالملاحظة n 1. على سبيل المثال: يمكنك استخدام الماكرو أر لتطبيق نموذج الانحدار الذاتي على المتغير الداخلي، بدلا من مصطلح الخطأ، وذلك باستخدام الخيار تيبيف. على سبيل المثال، إذا كنت ترغب في إضافة الفواصل الخمسة الماضية من Y إلى المعادلة في المثال السابق، يمكنك استخدام أر لإنشاء المعلمات والتخلف باستخدام العبارات التالية: البيانات السابقة توليد الإخراج هو مبين في الشكل 18.60. الشكل 18.60 ليست خرج الخوارزمية لنموذج أر من Y يتنبأ هذا النموذج Y بمزيج خطي من X1 و X2 و اعتراض وقيم Y في أحدث خمس فترات. استخلاص الانحدار غير المقيد للناقلات لنموذج مصطلحات الخطأ لمجموعة من المعادلات كعملية متجه الانحدار الذاتي، استخدم النموذج التالي من ماكرو أر بعد المعادلات: قيمة اسم العملية هي أي اسم تقدمه أر لاستخدامه في صنع أسماء الانحدار الذاتي المعلمات. يمكنك استخدام ماكرو أر لنموذج عدة عمليات أر مختلفة لمجموعات مختلفة من المعادلات باستخدام أسماء عملية مختلفة لكل مجموعة. يضمن اسم العملية أن أسماء المتغيرات المستخدمة فريدة. استخدم قيمة اسم عملية قصيرة للعملية إذا كانت تقديرات المعامل ستكتب إلى مجموعة بيانات الإخراج. يحاول الماكرو أر إنشاء أسماء معلمات أقل من أو يساوي ثمانية أحرف، ولكن هذا يقتصر طول العملية. والذي يستخدم كبادئة لأسماء معلمات أر. القيمة فاريابلليست هي قائمة المتغيرات الذاتية للمعادلات. على سبيل المثال، لنفترض أن أخطاء المعادلات Y1 و Y2 و Y3 يتم إنشاؤها بواسطة عملية الانحدار الذاتي للناقلات من الدرجة الثانية. يمكنك استخدام العبارات التالية: التي تولد التالية ل Y1 و التعليمات البرمجية مشابهة ل Y2 و Y3: يمكن استخدام الأسلوب المربعات الصغرى الشرطية (مكلس أو مكلس n) لعمليات المتجه. يمكنك أيضا استخدام نفس النموذج مع القيود التي مصفوفة معامل تكون 0 في التأخر المحدد. على سبيل المثال، تنطبق العبارات التالية عملية متجه من الدرجة الثالثة على أخطاء المعادلة مع كل المعاملات عند التأخر 2 المقيدة إلى 0 ومع المعاملات عند الفواصل الزمنية 1 و 3 غير المقيدة: يمكنك نموذج السلسلة الثلاثية Y1Y3 باعتبارها عملية الانحدار الذاتي المتجه في المتغيرات بدلا من الأخطاء باستخدام الخيار تيبيف. إذا كنت ترغب في نموذج Y1Y3 كدالة للقيم الماضية من Y1Y3 وبعض المتغيرات الخارجية أو الثوابت، يمكنك استخدام أر لتوليد البيانات لفترات التأخر. اكتب معادلة لكل متغير للجزء نونوتريغريسيف من النموذج ثم قم باستدعاء أر مع الخيار تيبيف. على سبيل المثال، يمكن أن يكون الجزء غير التخريطي للنموذج دالة للمتغيرات الخارجية، أو يمكن أن يكون معلمات اعتراض. إذا لم تكن هناك مكونات خارجية لنموذج الانحدار الذاتي للناقل، بما في ذلك عدم وجود اعتراضات، ثم قم بتعيين صفر لكل من المتغيرات. يجب أن يكون هناك تخصيص لكل من المتغيرات قبل أن يسمى أر. ويوضح هذا المثال المتجه Y (Y1 Y2 Y3) كدالة خطية فقط لقيمته في الفترتين السابقتين ومجهز خطأ ضوضاء أبيض. يحتوي النموذج على 18 (3 3 3 3) معلمات. بناء الجملة من ماكرو أر هناك حالتان من بناء الجملة لل ماكرو أر. عندما لا تكون هناك حاجة إلى قيود على عملية أر ناقلات، وبناء الجملة ماكرو أر الشكل العام يحدد بادئة أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتحديد عملية أر. إذا لم يتم تحديد إندوليست، فإن القائمة الذاتية افتراضيا للاسم. التي يجب أن تكون اسم المعادلة التي سيتم تطبيق عملية خطأ أر. لا يمكن أن تتجاوز قيمة الاسم 32 حرفا. هو ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. إذا تم إعطاء أكثر من اسم واحد، يتم إنشاء عملية ناقلات غير مقيدة مع المخلفات الهيكلية من جميع المعادلات المدرجة على النحو المتراجعون في كل من المعادلات. إذا لم يتم تحديدها، افتراضيات إندوليست الاسم. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات في فترات التأخر غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. Valid values of M are CLS (conditional least squares estimates), ULS (unconditional least squares estimates), and ML (maximum likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified. The ULS and ML methods are not supported for vector AR models by AR. specifies that the AR process is to be applied to the endogenous variables themselves instead of to the structural residuals of the equations. Restricted Vector Autoregression You can control which parameters are included in the process, restricting to 0 those parameters that you do not include. First, use AR with the DEFER option to declare the variable list and define the dimension of the process. Then, use additional AR calls to generate terms for selected equations with selected variables at selected lags. For example, The error equations produced are as follows: This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but not Y3) at both lags 1 and 2, and that the errors for Y2 and Y3 depend on the previous errors for all three variables, but only at lag 1. AR Macro Syntax for Restricted Vector AR An alternative use of AR is allowed to impose restrictions on a vector AR process by calling AR several times to specify different AR terms and lags for different equations. The first call has the general form specifies a prefix for AR to use in constructing names of variables needed to define the vector AR process. specifies the order of the AR process. specifies the list of equations to which the AR process is to be applied. specifies that AR is not to generate the AR process but is to wait for further information specified in later AR calls for the same name value. The subsequent calls have the general form is the same as in the first call. specifies the list of equations to which the specifications in this AR call are to be applied. Only names specified in the endolist value of the first call for the name value can appear in the list of equations in eqlist . specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . Only names in the endolist of the first call for the name value can appear in varlist . If not specified, varlist defaults to endolist . specifies the list of lags at which the AR terms are to be added. The coefficients of the terms at lags not listed are set to 0. All of the listed lags must be less than or equal to the value of nlag . and there must be no duplicates. If not specified, laglist defaults to all lags 1 through nlag . The MA Macro The SAS macro MA generates programming statements for PROC MODEL for moving-average models. The MA macro is part of SASETS software, and no special options are needed to use the macro. The moving-average error process can be applied to the structural equation errors. The syntax of the MA macro is the same as the AR macro except there is no TYPE argument. When you are using the MA and AR macros combined, the MA macro must follow the AR macro. The following SASIML statements produce an ARMA(1, (1 3)) error process and save it in the data set MADAT2. The following PROC MODEL statements are used to estimate the parameters of this model by using maximum likelihood error structure: The estimates of the parameters produced by this run are shown in Figure 18.61. Figure 18.61 Estimates from an ARMA(1, (1 3)) Process There are two cases of the syntax for the MA macro. When restrictions on a vector MA process are not needed, the syntax of the MA macro has the general form specifies a prefix for MA to use in constructing names of variables needed to define the MA process and is the default endolist . is the order of the MA process. specifies the equations to which the MA process is to be applied. If more than one name is given, CLS estimation is used for the vector process. specifies the lags at which the MA terms are to be added. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . specifies the estimation method to implement. Valid values of M are CLS (conditional least squares estimates), ULS (unconditional least squares estimates), and ML (maximum likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified in the endolist . MA Macro Syntax for Restricted Vector Moving-Average An alternative use of MA is allowed to impose restrictions on a vector MA process by calling MA several times to specify different MA terms and lags for different equations. The first call has the general form specifies a prefix for MA to use in constructing names of variables needed to define the vector MA process. specifies the order of the MA process. specifies the list of equations to which the MA process is to be applied. specifies that MA is not to generate the MA process but is to wait for further information specified in later MA calls for the same name value. The subsequent calls have the general form is the same as in the first call. specifies the list of equations to which the specifications in this MA call are to be applied. specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . specifies the list of lags at which the MA terms are to be added. Signal ProcessingDigital Filters Digital filters are by essence sampled systems. The input and output signals are represented by samples with equal time distance. Finite Implulse Response (FIR) filters are characterized by a time response depending only on a given number of the last samples of the input signal. In other terms: once the input signal has fallen to zero, the filter output will do the same after a given number of sampling periods. The output y ( k ) is given by a linear combination of the last input samples x ( k i ) . The coefficients b ( i ) give the weight for the combination. They also correspond to the coefficients of the numerator of the z-domain filter transfer function. The following figure shows an FIR filter of order N 1 : For linear phase filters, the coefficient values are symmetric around the middle one and the delay line can be folded back around this middle point in order to reduce the number of multiplications. The transfer function of FIR filters only pocesses a numerator. This corresponds to an all-zero filter. FIR filters typically require high orders, in the magnitude of several hundreds. Thus the choice of this kind of filters will need a great amount of hardware or CPU. Despite of this, one reason to choose a FIR filter implementation is the ability to achieve a linear phase response, which can be a requirement in some cases. Nevertheless, the fiter designer has the possibility to choose IIR filters with a good phase linearity in the passband, such as Bessel filters. or to design an allpass filter to correct the phase response of a standard IIR filter. Moving Average Filters (MA) Edit Moving Average (MA) models are process models in the form: MA processes is an alternate representation of FIR filters. Average Filters Edit A filter calculating the average of the N last samples of a signal It is the simplest form of an FIR filter, with all coefficients being equal. The transfer function of an average filter is given by: The transfer function of an average filter has N equally spaced zeroes along the frequency axis. However, the zero at DC is masked by the pole of the filter. Hence, there is a larger lobe a DC which accounts for the filter passband. Cascaded Integrator-Comb (CIC) Filters Edit A Cascaded integrator-comb filter (CIC) is a special technique for implementing average filters placed in series. The series placement of the average filters enhances the first lobe at DC compared to all other lobes. A CIC filter implements the transfer function of N average filters, each calculating the average of R M samples. Its transfer function is thus given by: CIC filters are used for decimating the number of samples of a signal by a factor of R or, in others terms, to resample a signal at a lower frequency, throwing away R 1 samples out of R . The factor M indicates how much of the first lobe is used by the signal. The number of average filter stages, N . indicates how well other frequency bands are damped, at the expense of a less flat transfer function around DC. The CIC structure allows to implement the whole system with only adders and registers, not using any multipliers which are greedy in terms of hardware. Downsampling by a factor of R allows to increase the signal resolution by log 2 ( R ) (R) bits. Canonical filters Edit Canonical filters implement a filter transfer function with a number of delay elements equal to the filter order, one multiplier per numerator coefficient, one multiplier per denominator coefficient and a series of adders. Similarily to active filters canonical structures, this kind of circuits showed to be very sensitive to element values: a small change in a coefficients had a large effect on the transfer function. Here too, the design of active filters has shifted from canonical filters to other structures such as chains of second order sections or leapfrog filters . Chain of Second Order Sections Edit A second order section . often referred as biquad . implements a second order transfer function. The transfer function of a filter can be split into a product of transfer functions each associated to a pair of poles and possibly a pair of zeroes. If the transfer functions order is odd, then a first order section has to be added to the chain. This section is associated to the real pole and to the real zero if there is one. direct-form 1 direct-form 2 direct-form 1 transposed direct-form 2 transposed The direct-form 2 transposed of the following figure is especially interesting in terms of required hardware as well as signal and coefficient quantization. Digital Leapfrog Filters Edit Filter Structure Edit Digital leapfrog filters base on the simulation of analog active leapfrog filters. The incentive for this choice is to inherit from the excellent passband sensitivity properties of the original ladder circuit . The following 4 th order all-pole lowpass leapfrog filter can be implemented as a digital circuit by replacing the analog integrators with accumulators. Replacing the analog integrators with accumulators corresponds to simplify the Z-transform to z 1 s T . which are the two first terms of the Taylor series of z e x p ( s T ) . This approximation is good enough for filters where the sampling frequency is much higher than the signal bandwidth. Transfer Function Edit The state space representation of the preceeding filtre can be written as: From this equation set, one can write the A, B, C, D matrices as: From this representation, signal processing tools such as Octave or Matlab allow to plot the filters frequency response or to examine its zeroes and poles . In the digital leapfrog filter, the relative values of the coefficients set the shape of the transfer function (Butterworth. Chebyshev. ), whereas their amplitudes set the cutoff frequency. Dividing all coefficients by a factor of two shifts the cutoff frequency down by one octave (also a factor of two). A special case is the Buterworth 3 rd order filter which has time constants with relative values of 1, 12 and 1. Due to that, this filter can be implemented in hardware without any multiplier, but using shifts instead. Autoregressive Filters (AR) Edit Autoregressive (AR) models are process models in the form: Where u(n) is the output of the model, x(n) is the input of the model, and u(n - m) are previous samples of the model output value. These filters are called autoregressive because output values are calculated based on regressions of the previous output values. AR processes can be represented by an all-pole filter. ARMA Filters Edit Autoregressive Moving-Average (ARMA) filters are combinations of AR and MA filters. The output of the filter is given as a linear combination of both the weighted input and weighted output samples: ARMA processes can be considered as a digital IIR filter, with both poles and zeros. AR filters are preferred in many instances because they can be analyzed using the Yule-Walker equations . MA and ARMA processes, on the other hand, can be analyzed by complicated nonlinear equations which are difficult to study and model. If we have an AR process with tap-weight coefficients a (a vector of a(n), a(n - 1). ) an input of x(n) . and an output of y(n) . we can use the yule-walker equations. We say that x 2 is the variance of the input signal. We treat the input data signal as a random signal, even if it is a deterministic signal, because we do not know what the value will be until we receive it. We can express the Yule-Walker equations as: Where R is the cross-correlation matrix of the process output And r is the autocorrelation matrix of the process output: Variance Edit We can show that: We can express the input signal variance as: Or, expanding and substituting in for r(0) . we can relate the output variance of the process to the input variance:

Comments